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Abstract

A previously published numerical method for simulation of vertical dynamic interaction between a train
and a railway track is expanded to account for state-dependent track properties. Track properties are
separated into linear contributions corresponding to an unloaded track, and non-linear contributions that
are dependent on the time-variant state of the different track components due to the dynamic loading
from a moving train model. A complex modal superposition is adopted to decouple the equations of
motion of the linear track model with a non-proportional spatial distribution of viscous damping. The
state-dependent properties are accounted for by applying equivalent transient external forces to the
corresponding nodes of the linear finite element model of the track. Simulations are carried out in the time
domain with a moving mass model. The need for a state-dependent track model is discussed with respect to
reported field and laboratory measurements. The numerical method and the state-dependent track model
are validated versus field measurements of wheel–rail contact force and rail bending moment as caused by a
100mm long and 0.9mm deep wheel flat.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The main objective of train–track interaction modelling is to combine the components of the
compound structure so that their complex dynamic interaction is represented properly. This calls for
detailed mathematical models of train and track when train–track interaction is simulated in a wide
frequency range. With the model presented here, the influence of load parameters such as train
speed, axle load, axle base distance, rail corrugations and wheel flats on the response of various
track components can be investigated. This information can be used for evaluation of the technical
and economical feasibility of proposed track designs and for planning of maintenance procedures.

ARTICLE IN PRESS

*Corresponding author. Tel.: +46-31-772-1500; fax: +46-31-772-3827.

E-mail address: jens.nielsen@me.chalmers.se (J.C.O. Nielsen).

0022-460X/$ - see front matter r 2003 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jsv.2003.06.033



Several train and track models of different detail for simulation of train–track interaction have
been proposed by various researchers, see for example the literature surveys by Knothe and
Grassie [1] and Popp et al. [2]. Most of these models are linear except for the conditions at the
wheel–rail contact. Not much effort has been spent on establishing mathematical models that
account for the state-dependent (non-linear) behaviour of rail pads and ballast/subgrade.

Dynamic train–track interaction is studied either in the frequency domain or in the time
domain. When the interaction is studied in the frequency domain, the included models must be
linear. However, computing times are short compared to the time-domain methods. Another
advantage is that the frequency dependence of for example rail pad and ballast/subgrade
properties can readily be considered. A moving irregularity model is used. This means that the
vehicle model remains in a fixed position on the rail, and an imaginary strip containing the wheel/
rail irregularities is pulled at a steady speed between the models of vehicle and track [1]. The
models developed by Thompson [3] and Hempelmann [4] are examples in this model category.
Time-domain models, on the other hand, may account for state-dependent and randomized track
properties and non-linear rolling contact mechanics. A moving mass model is adopted, where the
vehicle model is moving along the track model considering the spatially varying track properties
that for example occur due to the discrete sleeper supports. Examples in this category are the
models developed by Nielsen et al. [5,6] and Ripke [7].

The objective of the present study is to expand a previously published model for simulation of
vertical train–track interaction [5,6] to account for the state-dependent (non-linear) properties of
rail pads and ballast/subgrade. In the previous model, a lumped parameter train model is moving
along a linear finite element model of the track. The wheel–rail contact model is non-linear
allowing for loss-of-contact and recovered contact. The train and track models are coupled
through algebraic constraint equations accounting for a given train speed and given irregularities
on the wheel tread and railhead. The need for a state-dependent track model will be discussed with
respect to laboratory and field measurements. The numerical method and the state-dependent
track model will be validated versus field measurements of wheel–rail contact force and rail
bending moment as caused by a 100mm long and 0.9mm deep wheel flat at different train speeds.
Simulation results from the state-dependent track model will be compared to those obtained when
using a linear track model.

2. State-dependent track properties

Extensive field and laboratory measurements have been performed on Swedish railway tracks
and on the rail pad currently used in modern Swedish tracks. In this section, some of these
measurements are described along with a short discussion on the detected non-linear
characteristics of certain track properties.

2.1. Field measurements of ballast/subgrade properties

Field measurements on Swedish railway tracks have been performed at several occasions by the
Swedish National Rail Administration (Banverket). Modern ballasted Swedish tracks consist of
concrete sleepers, UIC60 rails and Pandrol fastenings with 10mm thick studded rubber rail pads.
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The ballast, on the test site investigated here, is a 300mm thick layer of 32–64mm granite
macadam. An instrumented stationary railway wagon (track loading vehicle (TLV)) with two
vertical servo-hydraulic cylinders was used to apply loads acting either on the rails or on sleepers
unfastened from the rails. The cylinders can be used for dynamic excitation with a force amplitude
5 kN up to 200Hz. At the same time, static preloads of maximum 150 kN can be applied by each
cylinder. The wagon also has a horizontal servo-hydraulic cylinder that can be used for lateral
excitation. The TLV can thus provide a good description of the track dynamics in the frequency
range 0–200Hz, taking into account the influence of a high static preload representing the static
wheel load. To determine the response function for the track at higher frequencies and without
any static preload, the track was loaded using impulse excitation with a sledgehammer. Results
from measurements performed in 1993 and 1995 by Banverket in collaboration with CHARMEC
are reported by Ferm!er and Nielsen [8] and by Igeland and Oscarsson [9], respectively.

Track receptances measured on the rail directly above a sleeper for two different static preloads
were illustrated in Ref. [9]. A strong dependence of preload was observed. In the same reference,
static load–deflection characteristics measured for three adjacent sleepers that had been
unfastened from the rails were reported. It was observed that the displacement of a sleeper end
due to a given load magnitude varied significantly from one sleeper to the next. Although the
nominal sleeper spacing was only 0.65m, the displacements of adjacent sleeper ends due to a static
50 kN load differed by a factor of two. It was concluded that the load–deflection characteristics of
the ballast/subgrade are highly non-linear. One important contribution to the non-linear
behaviour was that parts of some sleeper base areas were not in contact with the ballast for the
unloaded track. Instead, some sleepers primarily hung from the rails.

In the measurements reported here, the vertical cylinders on the TLV were used to apply loads
on different sleepers. The measurements were performed in 2000 on the main line
‘‘Svealandsbanan’’ between Eskilstuna and S .odert.alje. This track is normally used for X2000
high-speed passenger traffic and for freight trains. The total load was applied symmetrically at
positions close to the two rail seats of one sleeper for measurement of ballast/subgrade properties.
Before the static and dynamic loads were applied on one sleeper, the rails were unfastened from
that sleeper and the adjacent sleepers by removing the fastening clips. The load was applied at
constant frequency 2Hz, but the dynamic load amplitude was varied between different tests. The
secant stiffness of the ballast/subgrade was evaluated as the range of total sleeper load during one
excitation cycle over the corresponding range of sleeper displacement. In Fig. 1, the influence of
maximum sleeper load on ballast/subgrade secant stiffness measured for 20 adjacent (unfastened)
sleepers is illustrated. Again, a large scatter in the results is observed. Note that the relationship
between secant stiffness and load is approximately linear. This indicates a non-linear
load–displacement behaviour of the ballast/subgrade.

A simple estimation of loss factors for the ballast/subgrade has been performed for three
adjacent sleepers. The energy dissipation (area of the hysteresis loop) Em during one excitation
cycle was estimated from the measured load–displacement characteristics for the sleeper–ballast/
subgrade system. For a linear system described by a structural (hysteretic) damper with loss factor
Z in parallel with a linear spring with stiffness k; the hysteresis loop is elliptical and the energy
dissipation Ec is determined by

Ec ¼ pZkx2
max: ð1Þ
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Here xmax is the maximum displacement of the system when excited by a harmonic force [10]. By
setting Ec ¼ Em and adopting the secant stiffness and the maximum displacement from the
measured load–displacement characteristics, the loss factor of the ballast/subgrade was
determined for different maximum loads applied on the sleeper. The results shown in
Fig. 2 indicate that the loss factor at 2Hz is relatively independent of the maximum load
applied on the sleeper for loads up to 2� 50 kN. Unfortunately, data were only available at the
frequency 2Hz.
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Fig. 1. Secant stiffness of ballast/subgrade versus maximum symmetric sleeper load at 2Hz. Stiffnesses evaluated from

measurements on 20 adjacent sleepers unfastened from the rails (Svealandsbanan, 2000).

Fig. 2. Ballast/subgrade loss factor (equivalent structural damping) versus maximum symmetric sleeper load at 2Hz.

Loss factors determined for three adjacent sleepers unfastened from the rails (Svealandsbanan, 2000): –&–, sleeper 1;

–J–, sleeper 2; –W–, sleeper 3.
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2.2. Laboratory measurements of rail pad properties

Stiffness and damping of the 10mm studded rubber rail pad that is used in Sweden in modern
tracks have been measured in the laboratory by Thompson and van Vliet [11]. A schematic
illustration of the static and dynamic load–deformation characteristics is shown in Fig. 3(a). The
rail pad was first preloaded by a given static force, which is illustrated by the dashed line. Then a
cyclic loading with respect to the static equilibrium was applied. The solid arrows in Fig. 3(a)
indicate the dynamic stiffness for different static preloads. For given preloads, the ratio of
dynamic stiffness to static stiffness was approximately 4:1. A weak frequency dependence of
dynamic rail pad stiffness and loss factor was observed. Thompson et al. [12] investigated the
influence of the non-linear stiffness behaviour of rail pads on the track component of rolling
noise. They concluded that neglecting the preloading effect on rail pad stiffness will lead to a
significant over-prediction of the track noise.

Andersson and Oscarsson [13] adopted a state-dependent viscoelastic three-parameter model to
represent the measured properties of the studded rubber rail pad (see Fig. 3(b)). Using this model,
it was found that both low- and high-frequency rail pad behaviour were modelled with high
accuracy. Measured data were taken from Ref. [11]. The linear rail pad properties were estimated
from low-amplitude dynamics experiments on a rail pad statically preloaded with 20 kN,
corresponding to the load applied by the rail fastenings. The state-dependent rail pad properties
were determined through interpolation of data from low-amplitude dynamics experiments
performed at five different static preload levels (20, 30, 40, 60 and 80 kN). In a demonstration
example, it was however shown that the influence of the state-dependent properties of the
investigated rail pad on simulated wheel–rail contact force was rather small. The calculated range
of rail pad deformation during a wheel passage was in this case so limited that a linear rail pad
model was sufficient.
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Fig. 3. (a) Schematic illustration of static and dynamic load–deflection characteristics for a 10mm studded rubber rail

pad. The rail pad was first preloaded by a given static force, which is illustrated by the dashed line. Then a cyclic loading

with respect to the static equilibrium was applied. The solid arrows indicate the dynamic stiffness for the different static

preloads. (b) Illustration of rail pad modelled by a viscoelastic three-parameter model. From Ref. [13].
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3. State-dependent track model

Receptances measured on a railway track will be strongly dependent of the magnitude of the
applied static preload. The load dependence stems primarily from the properties of rail pads and
ballast/subgrade as was discussed in the previous section. These circumstances call for the use of a
state-dependent track model.

The track model used here is a finite element model with state-dependent track component
properties (see Fig. 4). The track and its loading are assumed to be symmetric with respect to a
centreline between the two rails. Therefore, only half the track is modelled to shorten computing
times. In the demonstration example presented in the following section, the length of the track
model is 50 sleeper bays with clamped boundary conditions of the rail at its two ends (see Fig. 4).
For the present application, the chosen number of sleeper bays is sufficient to reach a condition at
the centre portion of the model where the effects from the boundaries are negligible. In each
sleeper bay, the rail is described by eight Rayleigh–Timoshenko beam finite elements. The rail is
discretely supported, via rail pads, by equidistant sleepers. The (half) sleepers are modelled as
rigid masses. The dampings of rail pads and ballast/subgrade are modelled as being viscous in
order to obtain a causal response in the time domain. In Fig. 4, the state-dependent stiffness and
damping of rail pads and ballast/subgrade are denoted by kp; cp; kb and cb; respectively. Input
data to the track model are listed in Table 1. Randomized track properties and sleepers modelled
by Rayleigh–Timoshenko beam finite elements can be accounted for in the model, but these
features are not adopted in the present study.

The stiffness and damping of rail pads and ballast/subgrade are separated in linear
contributions corresponding to an unloaded track, and increments that are determined by the
time-variant state of the components due to the current positions of adjacent wheel loads. To save
computing times in the simulation of train–track interaction, a complex modal superposition is
adopted to decouple the equations of motion for the track model with only the linear
contributions and a non-proportional spatial distribution of viscous damping [6,14].

The state-dependent increments of stiffness and damping are accounted for by applying
equivalent external forces to the corresponding nodes of rail and sleepers (see again Fig. 4). For
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Fig. 4. Schematic illustration of the state-dependent track model used for simulation of vertical dynamic train–track

interaction. Arrows in the track model indicate external transient forces acting between sleepers and rail and between

sleepers and ballast/subgrade. The magnitudes of these forces are governed by the time-variant states of rail pads and

ballast/subgrade.
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each rail pad, the magnitude of two equal but counter-acting forces is governed by its calculated
compression and compression rate. For each spring–damper system modelling the ballast/
subgrade under each sleeper, the magnitude of two counter-acting forces (one force is
acting on the assumingly rigid foundation under the ballast/subgrade) is determined by the
calculated vertical displacement and velocity of the sleeper. In the time-stepping integration
scheme, the states of rail pads and ballast/subgrade are calculated in each time-step and the forces
are updated accordingly. The calculation of the state-dependent forces is treated in more detail in
Section 3.3.

3.1. Mathematical model of the track

The complex modal superposition technique adopted here was developed elsewhere, see
Abrahamsson [14]. The technique has previously been used with linear track models as presented
by Nielsen et al. [5,6]. Here the approach to use complex modal superposition in the presence of
state-dependent track properties is advanced.
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Table 1

Summary of track and train properties

Parameter Value

Track component

UIC60 rail Bending stiffness 6.4MNm2

Shear stiffness 250MN

Mass per unit length 60.0 kg/m

Rotational inertia per unit length 0.24 kgm

Rail pad Linear stiffness 80MN/m

Linear viscous damping 15 kNs/m

Side length 0.15m

Sleeper Mass (half-sleeper) 125 kg

Sleeper distance 0.65m

Ballast properties per rail seat Linear stiffness 30MN/m

Linear viscous damping 31 kNs/m

Train model

Unsprung wheelset mass 1185 kg

Axle load 24 tonnes

Bogie axle base 1.8m

Wheel diameter 900mm

Wheel flat

Length 100mm

Depth 0.90mm
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The coupled second order equations of motion of the state-dependent track model with N

degrees-of-freedom can be written in first order state–space form as

Atrack ’ytrackðtÞ þ BtrackytrackðtÞ ¼
FtrackðtÞ

0

( )
; ð2Þ

ytrackðtÞ ¼
xtrackðtÞ

’xtrackðtÞ

( )
; ð3Þ

Atrack ¼
Ctrack Mtrack

Mtrack 0

" #
; ð4Þ

and

Btrack ¼
Ktrack 0

0 �Mtrack

" #
: ð5Þ

Here Atrack and Btrack are 2N � 2N matrices which contain the linear contributions of the state-
dependent track properties. The state–space vector ytrack includes the nodal displacements xtrack

and nodal velocities ’xtrack of the track model. The external load vector Ftrack includes
contributions both from wheel–rail contact forces Fw=r and forces Fsd accounting for the state-
dependent track property increments.

Since the homogeneous problem corresponding to Eqs. (2)–(5) is linear and self-adjoint, its
complete modal solution can be determined from the standard linear algebraic eigenvalue
problem, see for example Ref. [15] (complex quantities are indicated by an underbar):

Ktrack�1

Ctrack Ktrack�1

Mtrack

�I 0

" #
qðnÞ

i
%
onqðnÞ

( )
¼ �

1

i
%
on

qðnÞ

i
%
onqðnÞ

( )
: ð6Þ

Provided that the damping is low, the solution to the eigenvalue problem in Eq. (6) yields N pairs
of complex-conjugated sets of eigenvalues i

%
on and eigenvectors qðnÞ: The eigenvectors are

assembled in the modal matrix

P ¼
qð1Þ y qð2NÞ

i
%
o1qð1Þ y i

%
o2Nqð2NÞ

" #
: ð7Þ

The equations of motion in Eqs. (2)–(5) are transformed into modal space by using the
transformations

ytrackðtÞ ¼ PqtrackðtÞ ð8Þ

and

QtrackðtÞ ¼ PT FtrackðtÞ

0

( )
ð9Þ

with T denoting the transpose of a matrix. Here qtrackðtÞ is the modal displacement vector with
elements qtrack

n
ðtÞ , and QtrackðtÞ is the modal load vector with elements Qtrack

n
ðtÞ . The modal load
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vector contains contributionsQw=rðtÞ from the wheel–rail contact forces and QsdðtÞ from the state-
dependent track property increments. Due to the orthogonality properties of the modal matrix, a
full decoupling of the equations of motion for the track model with a non-proportional spatial
distribution of viscous damping is obtained. The 2N uncoupled equations of motion determining
the response from the transient loading of the track are obtained as in Ref. [16] (n ¼ 1; 2;y; 2N):

diagð
%
anÞ’q

trackðtÞ þ diagð
%
bnÞqtrackðtÞ ¼ QtrackðtÞ ð10Þ

with the modal normalization constants

diagð
%
anÞ ¼ PTAtrackP ð11aÞ

and

diagð
%
bnÞ ¼ PTBtrackP: ð11bÞ

The modal stiffness
%
bn and the modal damping

%
an are related to the nth eigenvalue i

%
on as

�i
%
on

%
an ¼

%
bn: ð12Þ

In the modal synthesis, the mode set is normally truncated to achieve a better computational
efficiency (see Ref. [17]). This approach is acceptable when the high-frequency components of the
exciting forces are negligible. In such a case, the excitation of the truncated high-frequency modes
and their contributions to dynamic responses will be small. However, the quasi-static contribution
from the truncated modes may not always be negligible. This is for example the case when
displacements and sectional forces are calculated in a structure (see Ref. [18]). In the present
study, the quasi-static contributions will be accounted for when rail pad deformations, sleeper
displacements and rail bending moments are calculated. An attractive approach to account for the
quasi-static contribution of the truncated modes without analyzing these modes individually is
described by Abrahamsson and Lundblad [16] and Clough and Penzien [18].

The contributions Dejk from the truncated high-frequency modes to the elements of the
flexibility matrix are calculated as

Dejk ¼
%
ejkðoref Þ �

X2M

n¼1

rðnÞ
j
rðnÞ

k

i
%
anðoref �

%
onÞ

; ð13Þ

where M is the number of retained complex-conjugated modal pairs. The dynamic flexibility
matrix e is evaluated at a frequency oref which is much lower than any of the eigenfrequencies of
the truncated modes. In the example in this study, oref ¼ 0: The quasi-static contribution Dxqs to
the calculated dynamic displacement in Eq. (8) is obtained as

DxqsðtÞ ¼ DeFtrackðtÞ: ð14Þ

3.2. Solution of the interaction problem

A general approach to simulate train–track interaction in the time domain was advanced in
Nielsen and Abrahamsson [5]. A mixed extended state–space vector was introduced,

zðtÞ ¼ qtrackT

xtrainT
’xtrainT #F

w=rT
n oT

: ð15Þ
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This vector is mixed in the sense that it contains modal displacements qtrack of the track, physical
displacements xtrain and velocities ’xtrain of the train, and impulses #F

w=r
¼

R
Fw=rðtÞ dt of wheel–rail

contact forces. In its general form, the system of time-variant equations for the coupled train–
track system is assembled in first order matrix form as [5,6]

Aðz; tÞ’zþ Bðz; tÞz ¼ Fðz; tÞ: ð16Þ

The equation system (16) contains the governing equations of motion for train and track together
with the algebraic constraint equations that are used to couple the train to the track. The given
(time-variant) train speed is entered into the model through the constraint equations, and the
Coriolis and centripetal accelerations that occur because the train model is moving along the track
model are accounted for. The contents of the two matrices are described in detail in Ref. [6]. Since
the addition of state-dependent track properties will have no influence on A and B; these matrices
are not repeated here. Note that the contribution Qw=r to the total modal load Qtrack is accounted
for within the product A’z: The mixed force vector F is written as

Fðz; tÞ ¼ QsdT

ðtÞ FtrainT

ðtÞ � .xirrTðtÞ � ’xirrTðtÞ
n oT

: ð17Þ

Here Ftrain is a vector containing given external loads acting on the train (such as axle loads), and
xirr is a vector containing information about the surface irregularities on wheel treads and railhead
leading to a prescribed relative wheel–rail displacement excitation. The new component in F is the
state-dependent modal load vector Qsd : The calculation of Qsd is discussed in Section 3.3. An
initial value problem for the solution of the transient vibration problem is obtained as

’z ¼ A�1ðF� BzÞ; zðt ¼ 0Þ ¼ z0; ð18Þ

where z0 is the initial state. The first order format allows for a rational numerical solution by use
of any of several existing time-integration methods. In the present study, solutions are obtained
using MATLAB’s stiff differential equation solver ode15s.

3.3. State-dependent modal loads

The external force FsdðtÞ (a partition of the load vector FtrackðtÞ in Eq. (2)) accounting for the
state-dependent increments of the track properties contains contributions from rail pads and
ballast/subgrade as

FsdðtÞ ¼ FpadðtÞ þ Fb=sðtÞ: ð19Þ

The separation of state-dependent track properties in linear contributions and time-variant
increments is schematically illustrated in Fig. 5. Let f

pad
i ðz; tÞ and g

pad
i ðz; tÞ be general expressions

describing the state-dependent load–displacement and load–velocity characteristics of the ith rail
pad. Then the state-dependent contribution to the total force acting on this rail pad is

F
pad
i ðz; tÞ ¼ f

pad
i ðz; tÞ � klin

pi Dx
pad
i ðtÞ þ g

pad
i ðz; tÞ � clin

pi D ’x
pad
i ðtÞ; ð20Þ

where klin
pi and clin

pi are the linear contributions to the stiffness and damping properties of rail pad i
which are already accounted for in the matrices Ktrack and Ctrack: The physical deformation Dx

pad
i

and deformation rate D ’x
pad
i of rail pad i are calculated from a modal sum with the 2M retained
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modes, cf., Eq. (8),

Dx
pad
i ¼ xrail

i � x
sleeper
i ¼

X2M

n¼1

ðrrail

i
ÞðnÞqtrack

n
�

X2M

n¼1

ðrsleeper

i
ÞðnÞqtrack

n
ð21Þ

and

D ’x
pad
i ¼ ’xrail

i � ’x
sleeper
i ¼

X2M

n¼1

ionðr
rail

i
ÞðnÞqtrack

n
�

X2M

n¼1

ionðr
sleeper

i
ÞðnÞqtrack

n
: ð22Þ

The quasi-static contributions from the truncated modes n > 2M to the dynamic displacements in
Eq. (21) are calculated according to Eq. (14). The elements ðrrail

i
ÞðnÞ and ðrsleeper

i
ÞðnÞ of the modal

matrix correspond to the physical displacements and velocities of the degrees of freedom (d.o.f.’s)
on rail and sleeper that are coupled to rail pad i:

The contribution from rail pad i to the total modal load is obtained as

ðQpad

i
Þn ¼ ðrsleeper

i
ÞðnÞ � ðrrail

i
ÞðnÞ

n o
F

pad
i ; ð23Þ

where the sign convention assumes that physical displacements of rail and sleepers are both
positive downwards. A similar procedure can be adopted to derive contributions from the ballast/
subgrade when the sleepers are modelled as rigid with only one d.o.f. The state-dependent
contribution from the ballast/subgrade to the total force acting on sleeper i is obtained as

F
b=s
i ðz; tÞ ¼ f

b=s
i ðz; tÞ � klin

bi x
sleeper
i ðtÞ þ g

b=s
i ðz; tÞ � clin

bi ’x
sleeper
i ðtÞ: ð24Þ

The contribution from the ballast/subgrade under sleeper i to the total modal load is calculated as

ðQb=s

i
Þn ¼ �ðrsleeper

i
ÞðnÞFb=s

i : ð25Þ

The total modal load Qsd is obtained by adding contributions from all rail pads and ballast/
subgrade components in the track model. To save computing time, the six rail pads and six
ballast/subgrade components nearest to each wheel load have been accounted for in the
demonstration example below. The contribution from the other components is negligible.

Note that the state-dependent modal loads can be extended to account for other states than
only the displacement and velocity of rail pads and ballast/subgrade suggested here. For example,
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if the pertinent data are available, a state-dependent inertia of the ballast/subgrade due to the
moving wheel loads can be included by adding an acceleration term to Eq. (24).

4. Demonstration example

Linear stiffnesses and viscous dampings of rail pads and ballast/subgrade have been determined
by tuning the calculated vertical direct receptance (amplitude and phase of displacement over
applied force versus excitation frequency) of the rail to the corresponding receptance measured at
the test site. The receptance was measured for the track without static preload by exciting the rail
at the centre of a sleeper bay with a sledgehammer. The agreement between measured and
calculated receptances is illustrated in Fig. 6. Tuned track properties are listed in Table 1. It is
observed in Table 1 that the tuned linear ballast stiffness 30MN/m fits well within the range of
secant stiffnesses in Fig. 1 when these are extrapolated to an unloaded track (zero sleeper force).

The first resonance frequency in Fig. 6 is obtained at around 60Hz. At this resonance, rail and
sleepers are vibrating in phase on the ballast. A second resonance, with a large relative motion of
rail and sleepers, is obtained at approximately 250Hz. This resonance frequency is to a large
extent determined by rail pad properties. The sharp peak above 900Hz is the pinned–pinned rail
resonance. At this resonance, the rail vibrates with a wavelength equal to two sleeper bays with
nodes above the sleepers, and with a slow decay of vibration amplitude along its length. The
boundaries of the finite track model lead to wave reflections, and thus the observed irregularities
in the calculated receptance around this resonance. However, the influence of these irregularities
on the calculated response considered in the present demonstration example is negligible.

Using the results in Figs. 1, 2 and 6, a state-dependent ballast/subgrade model (representing the
test site on Svealandsbanan) has been derived. Unfortunately, measured data from unfastened
sleepers are only available for the excitation frequency 2Hz. For the assembled track, the direct
receptance was measured in the frequency range 10–2000Hz, but in this case in the absence of a
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Fig. 6. Amplitude and phase of measured (- - - -) and calculated (——) direct track receptance of rail at midspan. Track

without static preload (Svealandsbanan, 2000).
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static preload. Due to the limited amount of information, some assumptions in the modelling of
the ballast/subgrade must be made. For example, it is assumed here that all sleepers in the track
model are supported by the linear ballast/subgrade stiffness 30MN/m. Further, based on the
information in Fig. 1, it is assumed that for the sleepers near a wheel load, the ballast/subgrade
secant stiffness increases proportionally with sleeper load according to

k
b=s
secant ¼ 2� 103F

b=s
i þ 30� 106 ðN=mÞ: ð26Þ

For different given sleeper loads F
b=s
i ; the corresponding sleeper displacements have been

calculated; see the square markers in Fig. 7. A fourth-degree polynomial was adopted to mimic
the measured ballast/subgrade load–displacement characteristic. The component ðFb=s

i Þk of the
force on sleeper i due to the state-dependent stiffness of the ballast/subgrade is given here as (note
that the linear term omitted in Eq. (27) is already accounted for in the modal model of the track)

ðFb=s
i Þkðz; tÞ ¼

aðxsleeper
i ðtÞÞ2 þ bðxsleeper

i ðtÞÞ3 þ dðxsleeper
i ðtÞÞ4 if x

sleeper
i > 0;

0 else

(
ð27Þ

with a ¼ 0:37� 1012 N/m2, b ¼ �2:47� 1015 N/m3 and d ¼ 5:75� 1018 N/m4.
The structural damping of the ballast/subgrade needs to be translated into viscous damping

before it can be used in the train–track interaction time-integration algorithm. The lowest track
resonance at 60Hz in Fig. 6 is to a large extent determined by the linear ballast/subgrade
properties listed in Table 1. At this frequency, an equivalent structural damping is given by

Z ¼
oclin

b

klin
b

¼
2p� 60� 31� 103

30� 106
¼ 0:39: ð28Þ

This loss factor is in the same order of magnitude as the loss factors reported in Fig. 2. Since the
loss factor seems to be relatively independent of sleeper load, a state-dependent ballast/subgrade
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Fig. 7. Load–displacement characteristics for (1) a state-dependent ballast/subgrade model (——) based on measured

data (&) and (2) a linear ballast/subgrade model (- - - -).
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viscous damping model leading to the loss factor 0.39 at 60Hz independent of sleeper load has
been selected. This is achieved if the quotient

t ¼
csd

b

ksd
b

¼
clin

b

klin
b

ð29Þ

is constant. Then it can be shown that the state-dependent viscous force on sleeper i is determined
by

ðFb=s
i Þcðz; tÞ ¼

t ’xsleeper
i aðxsleeper

i ðtÞÞ þ bðxsleeper
i ðtÞÞ2 þ dðxsleeper

i ðtÞÞ3
h i

if x
sleeper
i > 0;

0 else:

8<
: ð30Þ

The total state-dependent load on each sleeper is determined by adding the contributions in
Eqs. (27) and (30). One bogie in the train is modelled by two rigid moving masses. Each moving
mass corresponds to half the unsprung mass of one wheelset (only half the bogie is modelled
because the track and its loading are assumed to be symmetric). In the frequency range of interest
in the present study, the dynamics of car body and bogie frames are decoupled from the wheelsets
by the soft primary and secondary bogie suspensions. Thus, a static load representing half the axle
load is acting on each unsprung mass. A non-linear compressive stiffness of each wheel–rail
contact is determined by assuming three-dimensional contact mechanics according to Hertz. The
Hertzian contact stiffness coefficient CH ¼ 9:17� 1010 N/m3/2 is determined by taking the curve
radii 0.45m and N for the wheel, and N and 0.30m for the rail. This corresponds to a wheel with
diameter 900mm and a conical transverse profile rolling on a straight rail with a curved railhead.

During the extensive field measurement campaign on Svealandsbanan in 2000, the influence of
different types of wheel out-of-roundness on dynamic wheel–rail contact force and track response
was also investigated. A freight train with six four-axle wagons was equipped with wheelsets
having different types of defect including wheel flats, polygonal wheels and spalls from surface or
subsurface initiated rolling contact fatigue. Wheel–rail contact forces were measured using a
wheel impact load detector with strain gauges on the rail web in nine consecutive sleeper bays.
Strain gauges were also positioned on the railfoot at 11 locations along the track at midspan and
above sleepers. In total, 40 track responses were recorded simultaneously at each train passage
with a sampling frequency of 6 kHz. The test site and the instrumented track are depicted in
Fig. 8. Train speeds were varied between 5 and 100 km/h. Each load case with a specified
combination of axle load and train speed was run three times. The test campaign is described in
more detail in Ref. [19].

Wheel–rail contact forces and rail bending moments have been simulated by using the
mathematical model described in Section 3. The investigated wheel out-of-roundness is a 100mm
long and 0.9mm deep wheel flat. The measured profile on a single line along the wheel flat was
used as excitation input. By synchronizing measured and calculated responses, it was concluded
that the centre of the wheel flat came in contact with the rail approximately 25mm after the centre
of one instrumented sleeper bay, and that this position did not vary much between different load
cases. The time history of the contact force caused by a wheel flat has a characteristic shape: The
response begins with a sudden drop due to the increasing radial deviation from the nominal wheel
radius. During this phase, the wheel will move downwards and the rail upwards to compensate for
the missing wheel material. In several cases, there is a loss of wheel–rail contact. After passing the
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centre of the wheel flat where the radial deviation starts to decrease back towards the nominal
radius, the wheel will continue downwards due to its greater inertia forcing the rail to do the same.
This results in a peak force. Calculated peak forces and peak rail bending moments using the
state-dependent track model presented here are shown as square markers in Figs. 9 and 10.
Measured peak values for different train passages are marked by asterisks. In order to illustrate
the influence of train speed, fifth order polynomials have been fitted to the measured and
calculated responses.

A local maximum in the measured peak wheel–rail contact force seems to be obtained
at 40 km/h. Simulation with the state-dependent track model using a higher train speed resolution
than was available from the test campaign predicts a contact force maximum at 35 km/h. The
train–track interaction algorithm with the state-dependent track model predicts measured
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Fig. 8. Test site on Svealandsbanan (2000): (a) Photograph of the track; (b) instrumentation on rail and sleepers,

including strain gauges on the rail web, on the railfoot and on the sleepers and accelerometers underneath the railhead

and on top of the sleepers.
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Fig. 9. Peak wheel–rail contact force versus train speed for a 100mm long and 0.9mm deep wheel flat. Measured data:

�, state-dependent track model; &, linear track model: J, Svealandsbanan, 2000.
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responses with the (under these circumstances) high level of accuracy of roughly 10%. Calculated
results obtained when the state-dependence is neglected are shown as circles in Figs. 9 and 10. It is
observed that accounting for state-dependent track properties improves the agreement with
measured data. For train speed 40 km/h, the state-dependent track model predicts a maximum
sleeper displacement 0.45mm in the presence of the studied wheel flat (0.39mm without the wheel
flat). Referring to the non-linear load–displacement characteristics of the ballast/subgrade
illustrated in Fig. 7, it is concluded that with such a range of sleeper displacements (0–0.45mm),
the use of a state-dependent track model instead of a linear track model is clearly indicated.

5. Concluding remarks

The state-dependence of railway track components such as rail pads and ballast/subgrade has
been discussed with reference to field and laboratory measurements. It has been demonstrated
that both rail pads and ballast/subgrade exhibit load–displacement characteristics that are
strongly non-linear and dependent on the static (or low-frequency) load magnitude. Most train–
track interaction models available in the literature are either fully linear (frequency-domain
models) or linear except for the conditions at the wheel–rail contact (time-domain models).
Depending on the type of investigated response, the influence of the state-dependent properties of
rail pads and ballast/subgrade may be quite significant. For example, rail and sleeper bending
moments will be dependent on a correct description of the stiffness of rail pads and ballast/
subgrade. A numerical approach to account for such state-dependent properties in a previously
developed method for simulation of dynamic train–track interaction has therefore been proposed.
Track properties are separated into linear contributions corresponding to an unloaded track and
non-linear contributions that are dependent on the time-variant state of the different track
components due to the dynamic loading from a moving train model. In the present study, the
state-dependent contributions to the modal loads are determined by the displacement and velocity
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Fig. 10. Peak rail bending moment versus train speed for a 100mm long and 0.9mm deep wheel flat. Measured data: �,

state-dependent track model; &, linear track model; J, Svealandsbanan, 2000.
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states of rail pads and ballast/subgrade (see Eqs. (20) and (24)). However, the modal loads can just
as well be expressed in a more general form if such information is available.

The numerical method and the state-dependent track model have been validated versus field
measurements of wheel–rail contact force and rail bending moment caused by a 100mm long and
0.9mm deep wheel flat. The good agreement between calculated and measured responses
encourages future use of the state-dependent track model.
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